What is Pandas?
Pandas is a Python library used for data manipulation and analysis. It is built on top of NumPy and provides two powerful data structures:
Series
→ for 1D labeled dataDataFrame
→ for 2D tabular data
To use it:
import pandas as pd
Pandas Series
What is a Series?
A Series is a one-dimensional labeled array that can hold any data type: integers, floats, strings, etc.
Creating a Series:
import pandas as pd
s = pd.Series([10, 20, 30, 40])
With Custom Index:
s = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
Accessing Elements:
s['a'] # returns 10
s[1] # returns 20
s[['a','c']] # returns subset
Useful Attributes:
s.index
→ Returns index labelss.values
→ Returns data valuess.dtype
→ Returns data type
Pandas DataFrame
What is a DataFrame?
A DataFrame is a 2-dimensional table with rows and columns, like an Excel sheet.
Creating a DataFrame:
data = {
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 22]
}
df = pd.DataFrame(data)
Viewing the DataFrame:
df.head() # first 5 rows
df.tail(2) # last 2 rows
df.shape # returns (rows, columns)
df.columns # returns column names
df.index # returns row index
Accessing Data
Columns
df['Name'] # Returns Series
Rows
df.loc[0] # Label-based indexing
df.iloc[1] # Position-based indexing
Selecting Multiple Columns
df[['Name', 'Age']]
Operations on DataFrames
Filtering Rows:
df[df['Age'] > 23]
Adding a New Column:
df['Salary'] = [50000, 60000, 55000]
Deleting a Column:
df.drop('Salary', axis=1, inplace=True)
Basic Statistics:
df.describe() # Summary statistics
df.mean() # Column-wise mean
Concept | Benefit |
---|---|
Series | Simple structure for 1D data |
DataFrame | Ideal for structured tabular data |
Easy Access | Powerful filtering & data manipulation |
Built-in Ops | Fast summary and transformation |
Summary
- Pandas Series is great for handling one-dimensional data with labels.
- DataFrames are the core tool for reading, manipulating, and analyzing tabular data in Python.
- Mastering Series and DataFrames makes it easier to work with real-world datasets (CSV, Excel, SQL, etc.)